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Abstract

Three-dimensional (3D) bifurcations of a partially melted or solidi®ed material in a cylinder heated from below are

studied numerically. Through nonlinear calculations, bifurcation diagrams are constructed for a melt of a Prandtl

number of one. As the interface is ®xed, our calculated results agree reasonably well with previous calculations, but

some discrepancies exist, which are further discussed through their dynamic evolutions and imperfect bifurcations of 5°
tilt. As the interface is allowed to deform, the bifurcation behavior changes signi®cantly, both for the onset of con-

vection and its convection mode. For the initial melt aspect ratio of one, the primary bifurcation changes from su-

percritical to subcritical with the increasing solid amount, and the onset mode from an axisymmetric (m0) mode to a 3D

(m1) mode. Although the free interface destabilizes the conductive mode and leads to an earlier onset of convection,

it may stabilize some ¯ow modes through its con®nement. Imperfect bifurcations due to a 5° tilt are further illus-

trated. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many physical problems in nature or industrial

processes, thermal convection is an important mech-

anism for heat and mass transfer. Particularly, as a ¯uid

is heated from below, its nonlinear behavior is very rich

and interesting in many scienti®c ®elds. The classic

Rayleigh±Benard (RB) problem o�ers a ®rst approach

to complex ¯ows as well as the transition from con-

ductive to convective heat transfer modes. In many

physical processes, the RB problem may further be as-

sociated with freezing or melting, where the onset of

thermal convection and the ¯ow modes are coupled with

the deformable melt/solid interface. Such is the case for

the storage of energy using the phase change of material

[1,2]. In the solidi®cation processing of alloys and the

growth of single crystals [3±5], it is also particularly

important. For example, during crystal growth of elec-

tronic materials, the onset mode could a�ect the inter-

face morphology and dopant segregation, which are

crucial to crystal quality [3].

In engineering applications, the material or ¯uid is

usually con®ned in a container, e.g., a box or a cylinder.

A generic situation in a cylinder is shown in Fig. 1(a),

where the ¯uid is heated from below. Because of the

friction from the solid wall, the onset of convection and

the ¯ow bifurcations depend on the boundary con-

ditions. Indeed, as compared with the buoyancy con-

vection between two parallel plates of in®nite extent, the

bounded con®guration has received much less attention

because of the di�culty of its analytical and numerical

treatment. In fact, in many engineering applications,

such as crystal growth or solidi®cation in an ampoule,

this con®guration is important. For this problem with

only the ¯uid inside, its bifurcations (primary) have been

well studied for the axisymmetric modes since the work

by Liang et al. [6] and Charlson and Sani [7,8]. Detailed

bifurcation diagrams were established by Yamaguchi

et al. [9] through a fully nonlinear ®nite element analysis.

Due to the limitation of the computation resources,

its three-dimensional (3D) bifurcations were not
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investigated until recently. Muller et al. [10] studied the

¯ow structures in a cylinder for a liquid metal (Prandtl

number Pr � 0:02) and water (Pr � 6:7) both exper-

imentally and numerically, and found that for water, the

axisymmetric mode can be stable up to 10Rac, where Rac

is the primary critical Rayleigh number. However, a

secondary bifurcation was found at Ra � 2800 with the

3D solutions having an m2 symmetry. A latter study by

Neumann [11] also obtained similar results but with

more careful numerical calculations, where the mesh

e�ects were discussed. Interestingly, Hardin and Sani

[12] used a weakly nonlinear analysis to show, di�er-

ently, that the m2 mode branched from the m0 mode

supercritically at Rac � 2800, and beyond this secondary

bifurcation the m0 mode became unstable. Such a con-

troversy was commented on by Wagner et al. [13] who

showed that the appearance of the m2 mode at

Ra � 2800 was possibly due to the numerical error of a

too-coarse grid used by Neumann [11]. Nevertheless,

later Wanschura et al. [14] used a mixed ®nite-di�erence/

Chebyshev collocation method to study the same prob-

lem for the aspect ratio ranging from 0.9 to 1.56 and for

Pr � 0:02 and 1, and commented that while the m2 mode

might appear but suspected that there was a small range

near Ra � 2800 where the m2 mode was not stable.

Despite the fact that the stability of the m0 and m2

modes are still unclear, the bifurcation structure pro-

posed by Hardin and Sani [12] is perhaps the most

complete to date for Pr � 6:7. It is all the same di�cult

to make any judgment about the stability of the modes

because the supercritical bifurcations are not structurally

stable. A little imperfection, such as tilt or heat loss, can

remove these points. Furthermore, these points are

highly sensitive to numerical accuracy. So far, the re-

ported results are still not mesh independent. At least, no

one has proven that. Therefore, in addition to the perfect

bifurcations with the ideal boundary conditions, imper-

fect bifurcations due to symmetry breaking also provide

useful information of which modes being more stable.

However, to the best of our knowledge no such study has

been conducted on this problem. The energy analysis

[14] is also a useful way to investigate the stabilizing (or

destabilizing) mechanisms. However, obtaining a basic

state is a numerical problem. In addition to numerical

accuracy, the branching structure is still di�cult to ®nd.

Newton's method with a continuation technique [15±17]

has been proven to be an e�cient way for bifurcation

analyses, but it is extremely costly for 3D problems.

Nomenclature

A melt aspect ratio

A surface area vector in Fig. 2(b).

Cp speci®c heat

e1 unit vector in x1-direction

eg unit vector in the gravity direction

f residual vector

g gravitational acceleration

h melt height

DH heat of fusion

H domain height

I ¯uxes

k thermal conductivity

L length

n unit normal vector

Nu Nusselt number

P pressure

Pr Prandtl number, vm=am

R radius

Ra thermal Rayleigh number, gbTR3�TH ÿ Tm�=
mmam

s arclength

S surface area

S/ source term of variable /
St Stefan number, DH=Cpm�TH ÿ Tm�
T temperature

TC cold zone temperature

TH hot zone temperature

Tm melting point

u x1-component of velocity

v x2-component of velocity

DV control volume

v velocity vector

w x3-component of velocity

x variable vector

y variable vector �x;Ra�T

Greek symbols

am thermal di�usivity of melt

bT thermal expansion coe�cient

ni coordinate in computational domain

c tilt angle

j thermal conductivity ratio �k=km�
h dimensionless temperature

s dimensionless time

sij singularity test function

mm kinematic viscosity

Superscripts

1 x-direction in the Cartesian coordinate

2 y-component in the Cartesian coordinate

3 z-component in the Cartesian coordinate

� reduced value

Subscripts

c critical value

s solid

m melt
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As a materials is partially melted or solidi®ed in a

cylinder, as shown in Fig. 1(b), the bifurcation behavior

for a two-phase RB problem could be quite di�erent.

After the onset of convection, the interface shape is a

coupled solution with the bifurcated mode, as show in

Fig. 1(c). Such a problem is particularly interesting and

important to solidi®cation and crystal growth, as well

as in the applications toward energy storage problems

using phase change materials. In fact, the coupled RB

convection with solidi®cation between two plates with

in®nitely extended domain was studied for the ®rst time

by Davis et al. [18]. They found that a subcritical bi-

furcation was associated with the onset of hexagonal

cells for a thick solid layer. Limited by their weakly

nonlinear analysis, their study was available only very

near the static state. Through a fully nonlinear bifur-

cation and stability analyses, Lan et al. [15] constructed

the bifurcation diagrams with detailed solution con-

nectivity for a two-dimensional (2D) bounded case.

Additional stable solution families and the transcritical

bifurcation due to the interface concavity were found.

For the cylinder con®guration with an interface, Chang

and Brown [16], for the ®rst time, used a fully non-

linear ®nite element analysis to construct its bifurcation

diagrams. However, their calculations were based on

the axisymmetric assumption, and the 3D bifurcations

were not considered. They also found that the system

became less stable, i.e., an earlier onset of convection,

as the interface was introduced. The subcritical bifur-

cation due to the interface was not observed in their

study.

From the previous 2D results [15], we expect that the

coupling of the 3D bifurcations and solidi®cation or

melting could lead to di�erent bifurcation behavior and

thus di�erent solution connections. If the solutions are

structurally stable, these solutions will be of interest in

practice, and they may have an impact on the design and

operation. Further ®nding a subcriticality will be par-

ticularly useful because it causes a catastrophic change

from a stable mode to the other. Therefore, in this paper

we attempt to study, for the ®rst time, the 3D bifurca-

tions of the two-phase RB problem in a cylinder using a

numerical bifurcation analysis. Through the fully non-

linear analysis, bifurcation diagrams can be constructed.

From the diagrams, the onset of the ¯ow and the

possible (preferred) modes, as well as their linear

Fig. 1. Schematic of Rayleigh±Benard problems in a cylinder: (a) one-phase problem; (b) two-phase problem at a conductive mode;

(c) two-phase problem at a convective mode.
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stability, can be determined. The roles of the interface

and the solid amount are further investigated.

In this paper, we only consider the material being

pure or almost pure so that the solutal e�ects and the

mushy zone can be neglected. In most energy storage or

materials processing applications, e.g., the vertical

Bridgman crystal growth [3], the material is con®ned in a

container, i.e., with solid walls. Therefore, the use of the

no-slip wall as the boundaries does not lose its gener-

ality. To generalize the system, the orientation (tilt angle

c) of the cylinder is arbitrary, so that the e�ect of tilting

(imperfect bifurcation) can also be studied. For com-

parison, we will ®rst construct the bifurcation diagram

for the ®xed-interface problem. As mentioned previ-

ously, the detailed stability of the convective modes is

still controversial, and most of the arguments are due

to numerical resolution. The 3D calculations of the

bifurcation and stability analyses require tremendous

computation e�ort, and it is still di�cult to get mesh-

independent results. Therefore, in this paper, even

though we also construct the bifurcation diagrams and

propose some possible stable states for the ®xed-inter-

face problem, we do not attempt to settle the contro-

versy. Instead, we are more interested in the solutions

that appear to be more stable even under an imperfect

condition. Furthermore, from there, we can investigate

the role of the deformable interface on the bifurcation

structures. Again, the preferred modes are proposed.

In the next section, the model description is pre-

sented, followed by numerical solutions in Section 3.

Section 4 is devoted to results and discussion. Conclu-

sions and the comments are drawn in Section 5.

2. Model description

The schematic of the two-phase RB problem in an

inclined cavity is shown in Fig. 1(c), which is repre-

sented in a Cartesian coordinate (x1; x2; x3). The height

of the cylinder is H, which can be changed in this study,

and the radius is R. The e�ects of melt aspect ratio A is

de®ned by Lm=R, while the initial ratio of solid and melt

heights is Ls=Lm. The temperature at the top and bottom

ends is ®xed; the lower temperature TH is higher than

the melting point (Tm) of the material inside, while the

upper temperature TC is lower. The side walls are as-

sumed adiabatic; heat loss can be considered if neces-

sary. The deformable melt/solid interface height h�x1; x2�
is unknown a priori and needs to be solved simulta-

neously with ®eld variables. Physical properties of the

material are assumed constant, while the melt is in-

compressible. Again, these assumptions can be relaxed

if necessary.

Dimensionless variables are de®ned by scaling the

length with R, velocity with am=R, and time with R2=am,

where am is the thermal di�usivity. The dimensionless

temperature �h� is de®ned as h � �T ÿ Tm�=�TH ÿ Tm�,
while hs is used for the solid phase. For the convenience

of illustration, TC is adjusted so that hs is equal to ÿ1 for

Ls=Lm � 1 at the upper boundary. The coordinates

(x1; x2; x3), the interface height h, and velocity compo-

nents (u; v;w) used afterwards are all dimensionless. The

Boussinesq approximation [19] is also adopted in the

¯ow calculation. This assumption is reasonable if the

temperature di�erence is not too large. Since the melt/

solid density ratio is usually about one for most ma-

terials, the volume change due to solidi®cation or

melting is neglected. The conservation equations in a

dimensionless form for the 3D incompressible laminar

¯ow of a Newtonian ¯uid and heat transfer in the melt

can be described as follows:

r � v � 0; �1�

ov=os� v � rv � ÿrP � Prr2vÿ Pr Ra heg; �2�

oh=os� v � rh � r2h; �3�
where s; v; P , and h are the dimensionless time, velocity,

pressure, and temperature, respectively. Pr is the Prandtl

number and eg the unit vector of gravity orientation.

The associated dimensionless number Ra in the source

term of the momentum equation is the thermal Rayleigh

number, de®ned as follows:

Ra � gbT�TH ÿ Tm�R3

ammm

;

where g is the gravitational acceleration, bT the thermal

expansion coe�cients, and mm is the kinematic viscosity.

In the solid �s�, only the conductive heat transfer

needs to be considered

ohs=os � jsr2hs; �4�

where js � ks=km is the dimensionless thermal conduc-

tivity of the solid, and it is assumed to be equal to one in

this study.

The boundary conditions for temperature are set to

be:

h�x1; x2; 0� � 1; hs�x1; x2;H=R� � ÿ1; �5�
for the bottom and top surfaces. The side wall is as-

sumed adiabatic,

n � rh � 0; �6�
where n is the normal vector of the solid wall pointing

outward. For the velocity, the no-slip boundary condi-

tion is adopted

v � 0: �7�
More importantly, at the melt/solid interface, the

interface energy balance is imposed as
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St�n � e3� oh
os
ÿ js

ohs

on

����
s

� oh
on

����
m

� 0; �8�

as well as the melting-point isotherm:

h � hs � 0: �9�

In Eq. (8), St � DH=�Cpm�TH ÿ Tm�� is the Stefan

number, where DH is the heat of fusion and Cpm the

speci®c heat of the melt. In Eq. (9), the e�ect of inter-

facial energy, i.e., the Gibbs±Thompson e�ect, is ne-

glected because the system dimension is usually in the

order of centimeters. This e�ect can be added easily if

necessary. It should be pointed out that the numerical

solution presented in this report can be used for a more

general case. Therefore, the assumptions made so far are

simply for the ease and clarity of illustration.

The measure of convective heat transfer is through

the averaged Nusselt number Nu at the melt/solid in-

terface de®ned as

Nu � ÿ 1

S

Z
S

oh
on

dS; �10�

where n is the unit normal vector pointing toward the

solid, and S is the area of the interface. For the case

without convection (pure heat conduction), Nu � 1.

3. Numerical solutions

Due to the unknown and deformed interface shape

h�x1; x2�, a ®nite volume method (FVM) [17,20] based on

the body-®tted coordinates is adopted. Fig. 2(a) shows a

portion of a sample mesh for calculation; the mesh lines

de®nes the boundaries of ®nite or control volumes

(CVs). A typical CV is illustrated in Fig. 2(b). The idea

of FVM is simply to integrate the governing equations

over every CV. For example, for each CV, after the

Gauss theorem is applied, a ¯ux balance equation for

the variables can be obtained with the following form:

Ie ÿ Iw � In ÿ Is � It ÿ Ib �
Z

DV
S/ dV ÿ d

ds

Z
DV

/ dV � 0;

�11�
where Ii, i � �e;w; n; s; t; b�, represents the ¯uxes of

variables across the faces of CV and / � �u; v;w; P or h�;
DV is the volume of CV and S/ the source term of the

governing equations. Each of the ¯uxes Ii is made of two

distinct parts, namely a convective contribution and a

di�usive contribution; the mesh movement also needs to

be considered in the convective part. Both terms are

approximated with the central di�erence scheme; up-

winding is found unnecessary here. More importantly,

Fig. 2. (a) A portion of a sample mesh for calculation; (b) a typical ®nite volume.
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CVs with zero volume are also placed on boundaries.

Accordingly, the boundary conditions can be imported

into the ¯ux balance equations easily. Detailed im-

plementation of the scheme can be found elsewhere

[17,20]. For stationary solutions, the time-dependent

term is removed.

In order to locate multiple steady states for station-

ary solutions and to avoid the singular Jacobian matrix

at bifurcation or limiting (turning) points, the pseudo

arclength continuation [21] is further adopted. The idea

of continuation is to trace the solution along a branch

family through an arclength s by including an additional

equation for the continuation parameter p. For example,

if Ra is chosen as the continuation parameter, the ad-

ditional equation can be written as the following:

oxT

os

����
s0

� x�s�� ÿ x�s0�� � oRa
os

����
s0

Ra�s�� ÿ Ra�s0��

ÿ �sÿ s0� � 0; �12�
where x � �u; v;w; P ; h; h�T and sÿ s0 is the step size

along the branch, where the arclength s � k�x;Ra�Tk2.

Appending the continuation equation to the steady-

state ¯ux balance equations (Eq. (11) without the tran-

sient term) for all CVs in the domain, as well as the

isotherm condition (Eq. (9)), leads to a set of nonlinear

algebraic equations:

f�y� � 0; �13�
where y � �x;Ra�T. Eq. (13) is solved by Newton's

method for all variables simultaneously. It should be

pointed out that the beauty of Newton's method is that

it solves all the variables globally and does not require

any special interface update schemes for the unknown

interface shape. During Newton's iterations, the Jaco-

bian matrix ~J , de®ned as ofi=oyj, is estimated by the

forward di�erence and the Newton's linear equations are

solved by the GMRES method [22]. The preconditioner

for GMRES used in this study is the incomplete LU

decomposition without ®ll in, i.e., the so called ILU�0�
preconditioner.

Although Newton's method provides a versatile so-

lution to our problem, due to the limitation of computer

memory (512 MB), the ®nest mesh we can use is quite

limited. The total number of nonlinear algebraic equa-

tions is limited to 2� 105. However, we have examined

most of the standard solutions by using an iterative

decoupled approach [20], and the numerical error using

the mesh here is believed to be acceptable. Furthermore,

although the leading eigenvalue of the Jacobian matrix

from the Newton's method can be used for stability

analysis [15], it is, unfortunately, still too costly to cal-

culate for our 3D problem. Therefore, instead of using

the eigenvalues, we have adopted a fully time-dependent

calculation for the stability analysis. By providing a 3D

disturbance, we can examine the time evolution of the

responses. If the original state can be restored, the mode

is stable. Otherwise, the solution is not stable. Further-

more, by monitoring the singularity of the Jacobian

matrix through the test function sij [15,23] during solu-

tion tracking, we are able to detect the bifurcation

points.

4. Results and discussion

In the general formulation of this problem, the so-

lutions depend on several parameters including Ra, c,

Pr, A, Ls=Lm, etc. However, in this study we focus

mainly on the Prandtl number of one with the initial

melt aspect ratio being one (Pr � 1;A � 1). For crystal

growth or solidi®cation applications, oxide materials

have a comparable Prandtl number. The unity thermal

conductivity ratio (i.e., js � 1) is also reasonable. The

e�ect of the solid amount (Ls=Lm) will be discussed in the

end. Although the parameters we consider here are very

limited, we believe that the role of the interface for other

situations may be similar.

Before calculated results are presented, several nu-

merical tests on the numerical scheme have been per-

formed to ensure the correctness of calculations. Fig. 3

shows the comparison of calculated thermal ®elds (an

m1 mode) with those obtained by Fluent [24], a com-

mercial CFD package, for Ls=Lm � 0 (with the interface

being ®xed) at Ra � 4000; Dh � 0:05. As shown, good

agreement is obtained for both the top-view isotherms at

x3 � 0:5 and the side-view ones at x1 � 0. Other similar

benchmark tests can be found elsewhere [25]. The e�ect

of meshes on the m1 family for the case with 5° tilt is

shown in Fig. 4; the interface is free and Ls=Lm � 1. As

shown, for Ra < 5000, the e�ect of meshes on the solu-

tion, for the mesh ®ner than M1, seems to be insigni®-

cant. For stronger convection, a ®ner mesh may be

necessary. However, in this study, the convection is

generally very week (Ra6 8000). Therefore, we have

Fig. 3. Comparison of the calculated thermal ®elds of an m1

mode at Ra � 4000 with those obtained by Fluent.
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chosen the mesh M2 for key solution families (m0 and

m1 modes), while the mesh M1 for the rest of solution

branches. Further re®nement of the solution is possible

by using the segregated approach [20]. However, such an

approach is di�cult to obtain unstable branches. Fur-

thermore, as mentioned previously, the stability of a

solution family can be sensitive to the mesh resolution,

and that is the main reason for the di�erences among

some of the previous reports. In reality, due to the

limitation of computing resources, it may be still di�cult

to obtain the so-called mesh independent bifurcation

points for 3D problems. On the other hand, bifurcation

structures are usually less sensitive to the numerical ac-

curacy. Therefore, in this report, we do not attempt to

settle the controversy among the previous studies for the

®xed-interface problem. Instead, we will illustrate its key

bifurcations, especially, when the deformable interface is

introduced.

4.1. Fixed interface (A � 1 and Ls=Lm � 0)

As the interface is ®xed and there is no-slip on the

side wall, the bifurcation diagram for Nu vs Ra is shown

in Fig. 5(a); the unstable branches are indicated by

dashed lines. Some typical solutions at Ra � 8000 are

shown in Fig. 5(b). The solution structure for

2000 < Ra < 4000 is redrawn in Fig. 6, while the cor-

responding test function sij along the static and m1

branches is shown below. Some typical solutions are

shown in Fig. 6 as well. In Figs. 5 and 6, the solution

families with a clear symmetry at x3 � 0:5 are marked by

m0, m1, m2, or m3, respectively, for illustration. One can

examine the solutions easily to get a better picture of the

¯ow structures. As shown in Fig. 5(a) or Fig. 6, the ®rst

primary bifurcation is at Rac � 2250 leading to an stable

axisymmetric family (m0). This value is in good agree-

ment with previous reported values (2250 by Hardin and

Sani [12] and 2200 by Neumann [11]). The dramatic

change of the test function along the static line is also in

good agreement with the bifurcation point shown in Fig.

5(a) or Fig. 6. This bifurcation is also the onset of

convection, which is a transition from the conductive to

convective modes. The second and third primary bifur-

cations lead to m2 (Rac � 2480) and m1 (Rac � 2700)

modes, respectively. Again, they are in reasonably good

agreement with previous reported values as well

(Rac � 2470; 2700, respectively [12,14]).

Beside these primary bifurcations, however, the

stability of the branching families is also a major interest

in practice. However, it is still quite controversial.

Fig. 5. Calculated results for the single-phase problem (A � 1 and Ls=Lm � 0): (a) bifurcation diagram; (b) some thermal and ¯ow

structures.

Fig. 4. The e�ects of meshes on Nu for a 5° tilt with a de-

formable interface.
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Wanschura et al. [14] tried to settle the arguments, but

no conclusions have been made to date. They also ob-

tained a stable m0 solution up to about 5±10Rac for

Pr � 6:7. However, our m0 solution becomes unstable at

about Ra � 8000, which can be identi®ed by the change

of the test function. We have also used the Fluent code

to test the m0 mode, and the stability limit is at about

Ra � 6000±7000. Therefore, our stability limit for m0

seems to be reasonable. However, if we use the mesh M1

for calculation, the stability limit is much lower being at

Ra � 3600. As illustrated in Fig. 6, two stable m0 modes

are in the same branch due to the same Nu; one is

marked by m0U and one by m0D. The m0U family has

an upward ¯ow at the centerline, while m0D has a

downward ¯ow. These two solutions are stable for

Ra < 8000 at least. Beyond this point, we are not able to

get a stable solution. The di�erence between our results

and previous ones is believed to be the mesh e�ect.

However, even the m0 mode can be stable up to higher

Ra, it is still very close to the neutral stability. As a re-

sult, it can become unstable easily as an imperfection is

introduced. For lower Pr values, the m0 mode becomes

unstable at a much lower Ra value, and this can also be

taken into account to our lower stability limit.

In Fig. 5(a) or Fig. 6, interestingly, the second pri-

mary bifurcation to the m2 family is independent of

the m0 mode. The ¯ow patterns at the intersection of the

two branches are di�erent; one is m0 and one is m2. The

solution of the m2 mode at Ra � 8000 is shown in the b1

of Fig. 5(b). From its isotherms at x3 � 0:5, there are

two hot spots (upward ¯ows) and two cold spots

(downward ¯ows). The other m2 solution at lower Ra is

the solution a1 in Fig. 5(a). This solution branch is

di�erent from that proposed by Hardin and Sani [12] for

Pr � 6:7. They showed that the intersection was a

transcritical bifurcation for Pr � 6:7, where the m0 and

m2 modes exchanged stability; the m0 mode became

unstable after this point, while the m2 became stable.

The m2 mode branching from Rac � 2470 seems to be

quite stable. Its dynamic response for Ra � 4000 with

respect to the tilt disturbance (c � 0:5° sin�pt� for t < 1;

c � 0 for t > 1) is shown in Fig. 7(a). Interestingly,

through mesh re®nement, Wagner et al. [13] commented

that for Pr � 6:7, the appearance of the m2 mode (at

Ra � 2800) reported previously [10,11] was due to the

use of a too coarse grid, and the m2 mode was not stable.

There are other types of m2 modes, as shown in the

solutions a2 and a3 in Fig. 5(a), and they can also be

m2U and m2D for the solution a2; similar ®nding for

Pr � 6:7 was reported by Muller et al. [10]. Also, the

solution a3 is also a typical symmetric m2 mode, and its

symmetry-breaking bifurcation leads to the solution like

a5. The solution a6 also bifurcates from the static line

near Ra � 2700. However, these solutions are not stable

and hence not so interesting. Furthermore, Wanschura

et al. [14] also obtained the m2 family for Pr � 6:7, but

Fig. 7. Dynamic evolution of the basic state to an angular disturbance: (a) an m2 mode at Ra � 4000; (b) an m1 mode at Ra � 3000; the

initial and ®nal thermal ®elds are shown in the ®gures.

Fig. 6. A close-up view of Fig. 5 for 2000 < Ra < 4000 and the

singularity test function sij along the static and m1 branches.
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they suspected that there was a small range that the m2

mode may be unstable. From the geometric point of

view, it is believed that a multi-cell family is favored for

smaller aspect ratios. However, for A � 1, it is not easy

to judge a stable solution from such a consideration. As

will be shown shortly, the m2 modes are hard to survive

after a 5° tilt is introduced. Therefore, in practice, they

may not be important as well.

The m1 mode is obtained from the third primary

bifurcation point in Fig. 5(a) or Fig. 6 is found unstable

until Ra � 3250. Wanschura et al. [14] obtained the

neutral value at about Ra > 4224. We are able to get a

stable m1 solution at Ra � 4000 by both our and Fluent

codes. The comparison of the m1 solutions has been

shown in Fig. 3. The solution connectivity at the sec-

ondary bifurcation is still unknown. The time-dependent

evolution of the m1 mode at Ra � 3000 after an angular

disturbance is shown in Fig. 7(b). As shown, the solution

runs away, and ®nally becomes an m0 mode. Clearly, as

shown in Fig. 6, four stable solutions may exist after

Ra � 3250. At smaller Ra, the solutions m0 and m2 seem

to be more stable.

Other modes, such as the m3 family like solutions b4

and b5 in Fig. 5(b), are found. Again, these modes are

unstable and thus not much interesting in practice.

In addition to using the pulse disturbance, the

stability of a solution family can be further investigated

though symmetry breaking. In practice, the system may

not be perfectly aligned with the gravity. Therefore, a

little tilt against the gravity is a typical symmetry

breaking that leads to imperfect bifurcations. In general,

less stable modes can be removed or become unstable,

and as a result, the bifurcation structures become sim-

pler and the multiplicity decreases. As shown in Fig. 8

(a), at 5° tilt, the m0 and m2 modes disappear from our

bifurcation diagram. At least, we could not obtain their

family anymore by using the solution at c � 0 as an

initial guess. Indeed, as discussed by Lan et al. [15], the

tilt reduces multiplicity and results in a much simpler

solution structure. As shown in Fig. 8 (a), the primary

mode now becomes m1, which starts from Ra � 0.

Typical isotherms and ¯ow patterns are a1 and b1 in

Fig. 8(b). In this branch, the ¯ow direction follows

the tilt, as shown by the solution a1. On the other hand,

the other ¯ow direction against the tilt, such as in the

solution b2, is also stable. Without tilt, the solutions b1

and b2 are images to each other; physically, they are the

same. Hence, the tilt breaks the symmetry. The reason

for b2 being stable is quite simple. As a ¯ow like b2 is

developed, the small tilt against the ¯ow is not able to

reverse it due to the inertial e�ect. However, at weaker

convection below the turning point, the inertial term is

not large enough to against the tilt, and as a result, only

the b1 family exists.

Tracking the solution family downward from b2, we

obtain an unstable family (b3) through a turning point.

Such an imperfect bifurcation is generic, which is in

general obtained from a pitchfork bifurcation. Similar

structures were found in the 2D problem [15]. The other

imperfect m3 modes was also obtained, such as the

families for b4 or b5, but they are still unstable.

By comparing Figs. 5 and 8, it is clear that the m1

family seems to be more stable for A � 1, while the ax-

isymmetric m0 modes and m2 modes are less stable with

respect to the symmetry breaking. Nevertheless, multi-

plicity still exists, and the ®nal stable mode is indeed

Fig. 8. Calculated results for the single-phase problem (Ls=Lm � 0) with a 5° tilt: (a) bifurcation diagram; (b) some thermal and ¯ow

structures.
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path dependent. Furthermore, the branching families

with even modes, such as m0 or m2, become less stable

when an asymmetric condition is introduced unless there

are other stabilizing mechanisms involved. As will be

illustrated shortly, the interface deformation may form a

barrier to inhibit the m0 mode from running away.

4.2. Deformable interface (A � 1 and Ls=Lm � 1)

As the interface is allowed to deform, the bifurcation

structure changes signi®cantly. We take a basic con-

duction mode with the same amount of solid and melt,

i.e., Ls=Lm � 1, as an example for illustration; the heat

¯ux from the bottom is kept the same as before, so that

Nu � 1. The bifurcation diagram is shown in Fig. 9(a)

and some typical thermal and ¯ow ®elds are shown in

Fig. 9(b). As shown, the onset mode is no longer m0, but

m1 and the bifurcation becomes subcritical. The primary

bifurcation point (Rac � 2130) is also signi®cantly lower

than the ®xed one (2250 for m0 and 2700 for m1), even

though the zone length and the aspect ratio at the onset

point are exactly the same as before. The m1 family bi-

furcating from the static mode is unstable ®rst (dashed-

line), but becomes stable after the turning point

(Ra � 2000). Typical stable m1 solutions like a1, b1, and

c2 are shown in the ®rst column of Fig. 9(b). As shown,

as the ¯ow develops, the interface shape is shaped by the

convection signi®cantly. The melt height increases sig-

ni®cantly as well. As a result the solutions move away

from the ®xed-interface ones. However, as the melt as-

pect ratio A increases, the m1 mode is preferred. The

codimension-two point for the ®xed-interface problem is

at about A � 1:12 and Ra � 2700 [14], where the m0 and

m1 modes may appear at the same time. Therefore, away

from the static line, due to the larger melt height, the m1

mode predominates.

At the static line, the subcritical nature is due to the

coupling of the ¯ow and the interface. Davis et al. [18]

®rst reported such a phenomena for a thin layer melted

from below, and the transition to a hexagon mode was

subcritical, i.e., with a jump in the melt-layer thickness.

Good agreement between experiments and their weakly

nonlinear analysis was obtained. They also found that

the subcritical nature predominated for a thick solid

layer. We have also obtained a similar conclusion that

the subcriticality becomes obvious as the solid amount

increases, which will be illustrated shortly. Furthermore,

once the m1 mode has been developed, it will need a

much lower Ra (below the turning point) to get back to

its conductive state. The decrease of the heat transfer

rate at the turning point is also dramatic. For a thick

solid layer, this quenching point can even be lower than

1708, i.e., the classic onset point.

Beside the ®rst appearing mode, the second primary

bifurcation is to an axisymmetric m0 mode, and again, it

is subcritical (not very clear). However, due to the de-

Fig. 9. Calculated results for the two-phase problem (A � 1 and Ls=Lm � 1): (a) bifurcation diagram; (b) some thermal and ¯ow

structures.
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formation of the interface caused by the convection, the

m0D and m0U modes do not have the same Nu, i.e.,

having di�erent heat transfer rates across the interface.

For the upper branch, it soon becomes stable after the

turning point. As shown in the solutions a2, b3, or c3 of

Fig. 9(b) (the third column), this mode is m0U ; the melt

¯ows upward at the center. Due to the melt convection,

the interface becomes concave. On the other hand, the

lower branch has a di�erent ¯ow direction, i.e., m0D. As

shown in the fourth column of Fig. 9(b), the typical

solutions are b4 and c4, and their interfaces are convex.

Indeed, right at the static line, there is a transition from

the m0D to m0U modes, where the interface concavity

also changes. To better illustrate the bifurcation, we

represent the bifurcation diagram using a new Nu, de-

noted by Nu
�
, by subtracting the original Nu by one (the

static mode) and adding a minus sign to it for the m0D
mode. As shown in Fig. 10, near the static line, it is

clearly a transcritical bifurcation. Beside the dash-line,

which is an m0U mode, both m0D and m0U families are

stable. Similar transcritical bifurcation was also ob-

served in the 2D case (a rectangular system) [15], and the

bifurcation point was also due to the change of interface

concavity; the turning point also appear in the concave-

interface branch. Furthermore, as compared with the m0

mode in Fig. 6, the m0 modes here is more stable, even

using the mesh M1. The interface shape, on the other

hand, may provides a stabilizing mechanism that con-

®nes the m0 ¯ow and hinders it from running away. This

will become obvious as the 5° tilt is introduced, which

will be discussed shortly.

As illustrated in Fig. 9(a), an m2 mode appears lately

behind m0D, but it is unstable; it is stable for the ®xed-

interface case. This is also an indication that the pres-

ence of the deformable interface may destabilize the

system, easing the onset of the convection. One can also

imagine that the interface morphology of the m2 mode is

more complicated, and this may discourage its forma-

tion. Also, the increasing melt aspect ratio due to con-

vection does not favor the m2 family. Typical solutions

are shown in the second column of Fig. 9(b) like solu-

tions b2 and c1. Other m2 or higher-order modes are

also found but they are not stable and thus not inter-

esting. Therefore, we do not attempt to go any further.

Furthermore, even though the m2 mode is unstable for

Ra > 2300, we still have three stable modes, i.e., m1,

m0U , and m0D. In reality, which mode being selected is

indeed path dependent. Interestingly, these solutions

are, at least, stable up to Ra � 8000. The multiplicity

exists over such a wide range is also di�erent from that

with a rigid interface. Again, it believed that the inter-

face shape con®nes the ¯ows and retain them to a higher

Ra value. As the Ra number increases, the interface

deformation increases as well, and this further inhibits

the ¯ow bifurcation. The stability of these modes can be

further illustrated through imperfect bifurcations.

An imperfect bifurcation due to 5° tilting is shown in

Fig. 11(a). This bifurcation diagram is similar to the

®xed-interface one (Fig. 8). The subcriticality also dis-

appears; it exists within a very small tilt angle. Again,

the most stable family is still m1 branching from Ra � 0,

and it has a ¯ow following the tilt direction. Typical

solutions from this branch are illustrated by the solu-

tions a1, b1, and c1 in Fig. 11(b). Other two m1 modes

are related to the solutions b2 (or c2) and b3 (or c3),

respectively. Again, similar to the ®xed-interface ones,

one is stable and one is not.

Interestingly, an imperfect m0 mode is still retained,

and its upper branch is stable, such as the solutions b4

and c4. As shown in the fourth column of Fig. 11(b), this

stable branch is an imperfect m0U mode. The lower

branch, which is believed to be related to the m0D mode,

is unstable. Typical solutions of the unstable imperfect

m0D mode are illustrated in the solutions b5 and c5 of

Fig. 11(b). Again, one may compare Figs. 9(a) and 11(a)

and ®nd that the m0 family is detached from the static

line after the 5° tilting because its perfect mode does not

exist. This solution structure here is also somewhat dif-

ferent from that of the 2D case [15], where two pairs of

convex and concave solutions appear after tilt. Fur-

thermore, even with 5° tilt, we still have three stable

modes after the turning point (Ra � 2800) of the m1

mode.

As mentioned previously, the subcriticality of the

primary bifurcation is a�ected by the solid amount. To

further illustrate that, we take the thickness ratio Ls=Lm

as a parameter to illustrate the primary bifurcation. The

heat ¯ux from the bottom is kept the same by changing

the upper thermal boundary condition. As shown in Fig.

12(a), with the increasing solid layer thickness (or solid

Fig. 10. A redrawn transcritical bifurcation diagram from Fig.

9(a) for the m0 modes; Nu
�

is de®ned by subtracting Nu by one

and adding a minus for the m0U mode. Two solutions at

Ra � 3000 are shown.
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amount), the bifurcation of the m1 mode changes indeed

from supercritical to subcritical. Solutions at Ra � 2500

are also shown in Fig. 12(b); the m0 mode is also in-

cluded for comparison. As shown, when the solid layer

thickness is zero, which can be done numerically, the

solution is the same as the ®xed-interface one. However,

there is a dramatic change of the solution when the solid

layer becomes ®nite. The subcriticality occurs at about

Ls=Lm � 0:5. Further increasing the solid amount, both

the primary and turning points move forward (to the

left). However, for Ls=Lm > 4, the change becomes much

smaller. This result is also consistent with the weakly

nonlinear analysis for a thin-layer of material melted

from below in an in®nite domain by Davis et al. [18] that

the subcriticality to hexagon cells predominates for a

thick solid layer.

On the other hand, the e�ect of the solid layer has

little e�ect on the bifurcation point of the m0 mode.

Therefore, as the solid layer increases, the primary bi-

furcation point of the m1 mode moves forward, and to a

certain point, at about Ls=Lm � 0:3, both modes appear

at the same time, i.e., a co-dimension-two point. At this

point, the onset of the convection can be m0 or m1 de-

pending on the initial disturbance. Furthermore, the

subcriticality nature is particularly interesting in prac-

tice. The onset of convection occurs dramatically to a

Fig. 12. The e�ect of solid amount on the primary bifurcation: (a) bifurcation diagram; (b) thermal ®elds and interface shapes at

Ra � 2500. The heat ¯ux for all cases is kept the same.

Fig. 11. Calculated results for the two-phase problem with a 5° tilt: (a) bifurcation diagram; (b) some thermal and ¯ow structures.
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®nite convective mode as the subcritical point is passed.

On the other hand, a ®nite convective mode can be

quenched to a conductive mode by reducing the driving

force to be below the turning point. Such a hystersis may

cause a process di�cult to control or operate.

5. Conclusions

In this study, we have explored the 3D nonlinear

phenomena of a generic two-phase Rayleigh±Benard

problem in a cylinder. The fully nonlinear analysis is

based upon a ®nite-volume/Newton's method with a

solution tracking capability. A singularity test function

and dynamic calculations have also been used to locate

the bifurcation points and to examine the stability of

solution families. The bifurcation diagrams for Pr � 1

and A � 1 have been constructed for both ®xed and free

interfaces.

It is found that the solid layer plays a critical role in

the two-phase problem, both on the ¯ow onset and the

convection modes. As the solid layer diminishes to zero,

the free-interface solution is the same as the ®xed-in-

terface one. For the ®xed-interface problem, the ®rst

primary bifurcation is either m0U or m0D, the second

appearing mode is an m2 mode, and then is an m1 mode.

Other unstable or high-order bifurcations are also

found, but they seem to be unimportant in practice and

are vulnerable to imperfections. As the solid amount

increases, the onset of the m1 mode moves forward (Rac

is reduced), while the onset points of the m0 and m2

modes are not changed much. As a result up to a certain

solid amount, the ®rst appearing mode becomes m1. As

the solid amount is further increased, the primary bi-

furcation becomes subcritical. Due to the con®nement of

the interface shape, the m0 modes becomes more stable,

and its transcritical bifurcation is similar to the 2D one

[15], where the transcritical point marks the change of

interface concavity. Furthermore, with the interface

deformation, as compared with a ®xed-interface one, the

m0U mode is also more stable and can be retained even

with a 5° tilt.

Although the solution structures obtained here are

for Pr � 1, according to the 2D results [15], we do not

expect much change along the static line for di�erent Pr

numbers. However, away from the static line, the e�ects

are not trivial. Nevertheless, the bifurcation structures

presented here are quite generic, which may provide

useful information for further study.

We have also found multiple stable steady states for

both ®xed and free-interface problems and the illus-

trated solution structures also provide the basis for

further analysis. The imperfect bifurcations due to 5° tilt

also help further identify the stability of a solution

family. As mentioned, those modes near the neutral

stability, which may be quite controversial from di�erent

calculations, can be destroyed easily. Again, the modes

that survive under the imperfection are more stable, and

may be easier to be observed in experiments. Further-

more, in practice, all the stable modes are path depen-

dent, and are sensitive to the initial conditions and

disturbances. Nevertheless, with the solution structure in

mind, it may be easier to better control the system. In

addition, other parameters, such as the thermal con-

ductivity ratio of the melt and the solid phases and the

e�ects of boundary conditions, etc., may be important as

well, but they are beyond the scope of this study.

On the other hand for 3D problems, numerical ac-

curacy is indeed a�ected by grid resolution. However,

the computation e�ort increases signi®cantly as the mesh

is re®ned. Therefore, even for the ®xed-interface prob-

lem, there are still some disagreements on the solution

stability and structures in the literature, particularly, for

the bifurcation points with a higher null dimension. On

the other hand, because these high-order bifurcations

are usually structurely unstable, they are di�cult to ®nd

experimentally. In other words, these bifurcation may

not be so interesting, even though they are helpful in

constructing detailed diagrams. Furthermore, they are,

unfortunately, usually very sensitive to the mesh and

hard to calculate accurately. On the contrary, imperfect

structures are more generic and structurely stable and

can be easily obtained both experimentally and numer-

ically with a much better con®dence. Therefore, the tilt

introduced here also help map the key picture of the

nonlinear bifurcations.

Finally, solutal e�ects [26,27] and time-dependent

modes [14] are not considered in this work. It is believed

that similar solution structures due to the solutal e�ects

may be found. Furthermore, investigating the 3D time-

dependent modes, which are believed to occur at higher

Ra numbers, still remains a grand challenge for nu-

merical simulation. Again, the grid resolution is a major

concern. The control of the bifurcation through rotation

or other external forces like magnetic ®elds may be in-

teresting as well, and they will be discussed in the near

future.
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